
Eur. Phys. J. A 7, 155–165 (2000) THE EUROPEAN
PHYSICAL JOURNAL A
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Abstract. A method is proposed which allows to calculate within the SCRPA theory the occupation
numbers via the single particle Green function. This scheme complies with the Hugenholtz van Hove
theorem. In an application to the Lipkin model it is found that this prescription gives consistently better
results than two other commonly used approximations: lowest order boson expansion and the number
operator method.

PACS. 21.60.-n Nuclear-structure models and methods – 21.60.Jz Hartree-Fock and random phase ap-
proximations – 21.60.Fw Models based on group theory

1 Introduction

The solution of the many body problem beyond the mean-
field level is not a very well settled problem. Though the
meanfield approach for all kinds of many body problems
is quite uniquely defined, the determination of the higher
order correlation functions is not. Besides the usual par-
tial resummation of Feynman graphs (e.g. ring summation
in RPA) there also exist variational ansätze such as those
introduced by Jastrow, Gutzwiller, together with the Res-
onating Valence Bond approach, etc. [1]. However only
in rare cases these variational approaches can be worked
through to the end by minimizing the groundstate energy
so that any new route can have interesting perspectives. In
most cases there remains the additional problem of how to
determine the excited states. One of the attractive features
of the Raleigh-Ritz variational Hartree-Fock (HF) theory
is indeed that it yields, consistently within the same the-
ory, groundstate and excited states (quasiparticle excita-
tions).

Since some time we have elaborated on a theory for two
body correlations functions which in a certain sense can
be considered as an extension of HF theory to two body
clusters. We for instance obtain selfconsistent nonlinear
equations for the correlation functions which simultane-
ously determine the correlated groundstate energy and the
spectrum of excitations. We named this approach Self -
Consistent Random Phase Approximation (SCRPA) [2–
6], since it is a consistent generalization of the standard
linear RPA approach [7–10]. This formalism was also de-
veloped independently by a second group of authors which
coined for it the name Cluster Hartree-Fock (CHF) which
seems also very appropriate [11]. This type of theory took

its roots several decades back starting with the work of
Hara [8]. Considerable progress was achieved by D. Rowe
using the equation of motion method which is summarized
in [9]. Some years later the theory was rederived using the
method of many body Green functions [12,2]. Since that
time not much progress was made on the formal aspect of
the theory until the more recent works cited above.

The SCRPA has lately given a series of interesting re-
sults for various many-body problems [13,4,5]. Neverthe-
less some open problems persisted in the past with this
formalism concerning for instance the consistent evalua-
tion of single particle quantities such as the single particle
density matrix or the occupation numbers. An approxi-
mation which lately came very much in use in relating
these quantities back to SCRPA (or to its poorer but nu-
merically easier variant the so called Renormalized RPA
(RRPA) [8]) is based on the particle number method which
long time ago already was advocated by D. J.Rowe [10].
Very recently we have proposed and applied a different
method which calculates these quantities via the single
particle Green’s function with a mass operator coupling
back to the SCRPA [4,6]. In those works, however, nei-
ther a detailed derivation nor an assessment of its quality
was given. On the other hand it has been pointed out that
certain consistency relations are indeed fulfilled.

The purpose of the present paper is therefore to give a
quite detailed derivation and to make a systematic inves-
tigation in a model case of the Green’s function approach
and to contrast it with other methods.

The paper is organized as follows: In section II the
SCRPA equations are deduced, their coupling with the
single particle Green’s functions is presented in section III,
the application to the Lipkin model is developed in section
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IV, the numerical results in section V and the conclusions
are given in section VI.

2 Outline of the problem

Self Consistent RPA can be derived in various ways, the
best known being the equation of motion method [10],
which is close to the Green’s function method described
below. The method which probably exhibits most clearly
the analogy with ordinary HF theory is the one due to
Baranger [14]. Let us first rederive in this way single par-
ticle HF. To this end we define a mean single particle en-
ergy in the following way (see (1) at bottom of this page),
where ENν and |N, ν〉 are in principle exact eigenenergies
and eigenstates of the Hamiltonian for a system with N
particles. For the groundstate we have ν = 0 and a†k is a
single particle creation operator. Minimizing (1) with re-
spect to the amplitudes ϕµk and ϕµ∗k leads directly to the
following eigenvalue problem∑

k′

〈0|
{
ak,
[
H, a†k′

]}
|0〉 ϕνk′ = εν ϕ

ν
k (2)

where {..., ...} is the anticommutator.
It is easy to verify that (2) is just one of the forms of

the usual single particle HF equations, once |0〉 is chosen
to be a Slater determinant.

Let us now in the same way find equations which de-
scribe another form of elementary excitations of the sys-
tem such as density vibrations. To this purpose we define
in analogy to (1) a mean excitation energy (see (3) at
bottom of this page).

Minimization with respect to the amplitudesXµ
kk′ , Y

µ
kk′

leads to

〈0|
[
δQ,

[
H,Q†ν

]]
|0〉 = Eν 〈0|

[
δQ,Q†ν

]
|0〉 (4)

where
Q†ν =

∑
k>k′

(
Xν
kk′a

†
kak′ − Y νkk′a

†
k′ak

)
(5)

and δQ is a variation (with respect to X or Y ) of Q†.
Equation (4) constitutes the SCRPA equations which are
described in great detail elsewhere [3–6]. Explicitly(

A B
−B −A

)(
Xν

Y ν

)
= Eν N

(
Xν

Y ν

)
(6)

εµ =

∑
ν,k

{
(EN+1

ν − EN0 )|〈N, 0|ϕµkak|N + 1, ν〉|2 + (EN0 − EN−1
ν )|〈N, 0|ϕµ∗k a†k|N − 1, ν〉|2

}
∑
ν,k

{
|〈N, 0|ϕµkak|N + 1, ν〉|2 + |〈N, 0|ϕµ∗k a†k|N − 1, ν〉|2

} (1)

Eµ =

∑
ν,k>k′

{
(ENν − EN0 )|〈N, 0|Xµ

kk′a
†
kak′ |N, ν〉|2 − (ENν − EN0 )|〈N, 0|Y µkk′a

†
k′ak|N, ν〉|

2
}

∑
ν,k>k

′

{
|〈N, 0|Xµ

kk′a
†
kak′ |N, ν〉|2 − |〈N, 0|Y

µ
kk′a

†
k′ak|N, ν〉|2

} (3)

where the matrices A and B are double commutators com-
ing from the left hand side of (4) and N is the norm ma-
trix to be discussed in the following section. If the ground
state |0〉 is known as a functional of the amplitudes X,Y ,
then the expectation values needed to build to the matri-
ces A,B and N can be expressed in terms of X,Y and
(6) leads to a nonlinear eigenvalue problem for the RPA
amplitudes which have to be determined iteratively very
much like the HF equations (2). Ideally this would be the
way in which the SCRPA equations are built. However, in
most cases the dependence of the ground state, defined in
(10) below, on X,Y is unknown and therefore one of the
main purposes of the present paper is to show how the
A,B and N matrices can be approximately expressed in
terms of the X,Y amplitudes without this knowledge. To
avoid a proliferation of names we will still call it SCRPA.
This study will be performed in the frame of a simple
model where in fact the ground state can be constructed
explicitly in terms of X,Y allowing for a comparison with
the approximate expressions for A,B and N .

A further interesting property of (4), (5), (6) is that
they are equivalent to

〈0|
[
Qν ,

[
H,Q†ν′

]]
|0〉 = Eνδν,ν′ (7)

〈0|
[
Q†ν ,

[
H,Q†ν′

]]
|0〉 = 0 (8)

This form is interesting since these equations have ex-
actly the same structure as any mean field Hartree-Fock-
Bogoliubov equations, be it for single Fermions or Bosons
or, as here, for Fermion pairs.

For a hamiltonian with two body interactions one ver-
ifies easily that (4) contains at most one and two body
density matrices. Roughly speaking the two body density
matrices can be expressed as quadratic forms of the am-
plitudes X and Y (for more details see [3–6]).

An important point is to realize that (5) is not re-
stricted to the particle-hole (ph) and (hp) subspaces as
is of common use in the nuclear literature on the sub-
ject [1,10,15]. Here the only restriction in (5) is that it
should not contain any diagonal (i.e. Hermitian) compo-
nents. Therefore in Q†ν =

∑
k 6=k′ χ

ν
kk′a

†
kak′ the matrix χ is

not Hermitian. The single particle basis in which (4,5,6)
shall be solved is obtained from

〈0|
[
H,Q†ν

]
|0〉 = 〈0| [H,Qν ] |0〉 = 0 (9)

One can show that (9) is obtained from the minimiza-
tion of the SCRPA ground state energy with respect to
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Fig. 1. Schematic graphical representation of the mean field
equation for quantum fluctuations. The dot stands for the first
order Born contribution to the mean field potential. A more
elaborate graphical representation can be found in ref [5]

the basis [3,4,6] but one also directly realizes that (9) is
consistent with the equations of motion (7,8), since it is
well known [3,14] that they follow from the definition of
the RPA groundstate as the vacuum of the excitation op-
erator (5). i.e.

Qν |0〉 = 0. (10)

Equation (10) demonstrates explicitly that the corre-
sponding groundstate |0〉 will be a functional of the ampli-
tudes X,Y . Actually (10) can be viewed as an eigenstate
equation of the nonhermitian operator Qν with eigenvalue
zero.

Expression (5) can be inverted as long as the ampli-
tudes X,Y are normalized in the standard way∑

k>k′

(
Xν
kk′X

ν′∗
kk′ − Y νkk′Y ν

′∗
kk′

)
= δνν′ (11)

and one obtains

a†kak′ =
∑
ν

(
Xν
kk′Q

†
ν + Y νkk′Qν

)
k > k′. (12)

Together with its hermitian conjugate and (10) one
then can evaluate two body densities of the form
〈0|a†k1

ak2a
†
k2′
ak1′ |0〉 appearing in (6) in terms of X,Y and

the single particle density matrix ρkk′ = 〈0|a†k′ak|0〉. In
cases where one can explictely construct the groundstate
from (10) also ρkk′ is known as a functional of X,Y . How-
ever, as stated already, the groundstate is generally not
known and an independent scheme of how to express ρkk′
in terms of X,Y must be developed. This point has been
a matter of debate in the past [15] and shall again be one
of the main subjects here. It should be noted that, de-
pending on the problem at hand, it can also happen that
certain elements of the two body density matrix can not
be explicitely expressed in terms of the X,Y amplitudes.
In the Lipkin model studied below one particular matrix
element of the two body density which belongs to this
category will be exposed. We will, however, demonstrate
that once a method to calculate the single particle density
matrix is available, a reliable way to evaluate the missing
two body matrix elements can be found. As mentioned
above, in the Lipkin model the RPA groundstate can be
constructed explicitly, allowing a comparison of the ap-
proximations against the fully consistent treatment of the
SCRPA equations.

It is also possible to provide a more physical interpre-
tation of (6). The matrix B contains the pair potential of
the two fermion pairs whereas the matrix A contains the

normal selfconsistent potential for fermion pairs. Quali-
tatively we can represent the selfconsistent equations (6)
as in Fig. 1 [2] where the wiggly line stands for quantum
fluctuations. Such a selfconsistent mean field potential for
density fluctuations as shown in Fig. 1 seems quite natu-
ral, since the groundstate of an interacting Fermi system
can be considered as a gas of quantal fluctuations. The
presence of fluctuations also has a feedback on the single
particle motion, an issue which we mainly want to consider
in this paper. For example, to couple back consistently
the single particle density matrix ρkk′ = 〈0| a†kak′ |0〉 to
the amplitudes X and Y in order to close the system of
equations, has been a matter of debate in the past [16].
As we mentioned already in the Lipkin model the RPA
ground state can be constructed explicitly and then the
approximations can be checked against the fully consistent
treatment in this case.

3 Coupling the single particle Green’s
function to the Self Consistent RPA

The eigenvalue problem (4) has as usual a corresponding
Green’s Function (GF) formulation. For the following it
is useful to also briefly outline this approach which, of
course, is completely equivalent to the eigenvalue prob-
lem (4). The derivation with the GF scheme has been
presented in detail before [5], but in order to make this
article more selfcontained we will repeat here the main
steps.

Let us therefore define the two time chronological
Green’s function at zero temperature which describe den-
sity fluctuations

Gt−t
′

k1k2k
′
1k
′
2

= −i 〈0|T
(
a†k2

ak1

)
t

(
a†
k
′
1
ak′2

)
t′
|0〉 (13)

where T is the chronological operator and

Ot = eiHtOe−iHt (14)

with H the full Hamiltonian operator. In principle in
(13) one should take only the fluctuating operator a†a −
〈0|a†a|0〉 but since in the equations of motion (4,5) any
c-number drops out we will stay with the definition given
in (13).

The two-body GF in (13) depends only on one time
difference exactly as in the one particle case. One can then
establish a formally exact Dyson equation for it. Like in
the single particle case the mass operator splits into an
instantaneous part and a frequency dependent part. The
first one contains the meanfield description of the quantal
fluctuations and that is all we want to treat here. In the
approximation of the instantaneous effective Hamiltonian
the Dyson equation reads

ωGSCRPA
k1k2k

′
1k
′
2

= Nk1k2k
′
1k
′
2
+

∑
p1p2k1k2p1p2

H(0) GSCRPA
p1p2k

′
1k
′
2

(15)

with
Nk1k2k

′
1k
′
2

= 〈0|
[
a†k2

ak1,a
†
k
′
1
ak′2

]
|0〉 (16)
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and

H(0)

k1k2k
′
1k
′
2

=
∑
p1p2

〈0|
[
a†k2

ak1,

[
H, a†p1

ap2

]]
|0〉 N−1

p1p2k
′
1k
′
2

(17)
One easily recognizes from (15-17) the equivalence

with (4) which explains the use of the superscript
SCRPA. Since the (15), (16), (17) have been derived at
length in several preceding articles [3,5] we will not rep-
resent them here in any detail.

For the coupling with the single particle Green’s func-
tion it is useful to define a SCRPA T-matrix from (15) in
the following way

GSCRPA
k1k2k

′
1k
′
2

= G0
k1k2k′1k

′
2

+G0
k1k2p1p2

TSCRPAp1p2p′2p
′
2
G0
p′1p
′
2k
′
1k
′
2

(18)
with

G0
k1k2k′1k

′
2

=
nk2 − nk1

ω − ε1 + ε2
δk1k′1

δk2k′2
(19)

where nk =
〈

0|a†kak|0
〉

and εk = k2

2m +
∑
k′ vkk′kk′ nk′

are the occupation numbers and generalized single particle
energies which we assumed without loss of generality to
be diagonal and vk1k2k3k4 is the antisymmetrised matrix
element of the two body interaction. With (15-17) the
T-matrix in (18) is uniquely defined. Since this is quite
standard procedure we do not further elaborate on the
form of the T-matrix. A form equivalent to (18) is given
by (we use summation convention)

GSCRPAk1k2k′1k
′
2

= G0
k1k2k′1k

′
2

+G0
k1k2p1p2

KSCRPA
p1p2p′2p

′
2
GSCRPAp′1p

′
2k
′
1k
′
2

(20)
with

KSCRPA
k1k2k′1k

′
2

= H(0)
k1k2k′1k

′
2
− (εk1 − εk2) δk1k′1

δk2k′2
(21)

From (20-21) we also read off the equality∑
k3k4

KSCRPA
k1k2k3k4

GSCRPAk3k4k′1k
′
2

=
∑
k3k4

TSCRPAk1k2k3k4
G0
k3k4k′1k

′
2

(22)

The important point to recognize is that the mass op-
erator of the single particle Dyson equation

(ω − εk) Gω
kk′ = δkk′ +

∑
p

Mω
kp G

ω
pk′ (23)

has a well known representation in terms of the full two
body T-matrix [4]. For better visibility we present the
relation graphically in Fig. 2.

At this point it has now become obvious what our in-
terrelation of single particle GF and SCRPA shall be: we
have to replace in Fig. 2 the full T-matrix by the ap-
proximate TSCRPA (ω) defined in (18). In addition to this
obvious construct there also exists a direct and strong con-
sistency requirement. It stems from the fact that we have
now two ways of calculating the correlation energy: the
first uses the well known relation between the single par-
ticle GF and the ground state energy [5,17,18]

E0 = − i
2

lim
t′−t→0+

Tr

(
i
∂

∂t
+ εk

)
Gt−t

′

kk (24)

Fig. 2. The mass operator of the single particle Dyson equa-
tion represented in terms of the full two body T-matrix

The second expresses the correlation energy density
via the two body GF (13):

Ecorr =
i

4
lim

t′−t→0+
Tr
[
vk1k′2k2k′1

(
Gt−t

′

k1k2k
′
1k
′
2
−G(0)t−t′

k1k2k
′
1k
′
2

)]
(25)

where again vk1k′2k2k′1
is the antisymmetrised two-body

matrix element entering in the Hamiltonian H. One can
also obtain the correlation energy from (24) via a suitable
sustraction.

The requirement is now that both expressions for the
correlation energy, that is, the one deduced from (24) and
(25), agree. This is equivalent to the Hugenholtz-van Hove
theorem which states that the chemical potential µ calcu-
lated via the single particle GF must be equal (at equi-
librium) to the energy per particle when calculated from
(25). It turns out that this only is achieved when expand-
ing the GF in (23) to first order in the mass operator

Gk = G0
k +G0

k Mω
k G

0
k (26)

with
(ω − εk) G0

k = 1 (27)
Of course one can use the iterated solution of the

Dyson equation, i.e. Gk = (ω − εk −Mω
k )−1 but for con-

sistency then the particle-hole propagators of the SCRPA
equation must be redefined accordingly. This has been dis-
cussed in [5] and may be elaborated in the future but for
the moment we keep with the more restrictive consistency
relation (26) together with (15-18).

For space reasons we have been relatively short in this
general section. We will, however, work out in some detail
the model case of the next section so that the reader, by
analogy, shall be able to reconstruct details also in the
general case quite easily.

4 Application to the Lipkin Model

The Hamiltonian of the Lipkin [19] model is given by

H = εJ0 −
V

2
(J2

+ + J2
−) (28)

with

J0 =
1
2

Ω∑
m=1

(c†1mc1m − c†0mc0m),

J+ =
Ω∑

m=1

c†1mc0m, J− =
Ω∑

m=1

c†0mc1m (29)
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The indices 0 and 1 denote the lower and upper levels re-
spectively, separated by an energy ε, and m is the angular
momentum projection in each shell with degeneracy Ω.

The commutation relations between these three oper-
ators, which are the generators of the SU(2) group, are

[J+, J−] = 2J0, [J0, J±] = ±J±. (30)

In the Lipkin model the number of particles is exactly
that needed to completely fill the lower shell, i.e. N = Ω.

4.1 SCRPA equations

The SCRPA solutions are built with the operators (we
stay in the normal phase)

Q† =
1√
−2〈J0〉

[XJ+ − Y J−],

Q =
1√
−2〈J0〉

[XJ− − Y J+] (31)

acting over a correlated vacuum |0〉 = |RPA〉, which is
defined by the equation

Q|RPA〉 = 0 (32)

to yield the excited state

|1〉 = Q†|RPA〉. (33)

The SCRPA equations (4) then take the following form(
A B
−B −A

)(
X
Y

)
= E

(
X
Y

)
(34)

with the matrix elements A and B defined by [10,20]

A =
〈
[J−, [H, J+〈]]

〉
/ 〈[J−, J+]〉

B = 〈[J+, [H, J+]]〉 / 〈[J−, J+]〉 (35)

where we used 〈· · ·〉 for 〈RPA| · · · |RPA〉.
The normalization of the excited state Q†|RPA〉 is

given by

〈QQ†〉 = 〈[Q,Q†]〉 = X2 − Y 2 = 1 (36)

With (36) the inversion of (31) yields J+ =√
−2〈J0〉

(
XQ† + Y Q

)
and the matrix elements of the

SCRPA matrices read

ASCRPA = ε+ 2V XY

BSCRPA = 2V
〈J2

0 〉
〈J0〉

+ V (X2 + Y 2) (37)

From (37) we see that we face exactly the problem dis-
cussed in Sect. 3. The single particle occupation 〈J0〉 and
the square

〈
J2

0

〉
can not directly be expressed in terms of

X and Y . Of course as is well known in the present simple

model it is possible to calculate the RPA groundstate via
(32) explicitly [19,20] :

|RPA〉 =
Ω/2∑
l=0

(Ω − 2l)!
(Ω/2− l)!l!

(
Y

X

)2

J2l
+ |HF 〉 (38)

and therefore also 〈J0〉 and
〈
J2

0

〉
can explicitly be calcu-

lated [3]. However, this is not the usual situation and in
general it will be very difficult if not impossible to solve
the vacuum condition (32). We have therefore to develop
other methods to get access to these quantities indepen-
dently. As already mentioned this is the main objective of
the present paper. The fact that (38) exists in this model
makes the comparison with a full SCRPA based on a RPA
wave function particularly instructive. As a word of cau-
tion we should mention again (see Sect. 2) that it is not
possible to include J0 as a further component into the def-
inition of the RPA excitation operator Q† (31) since J0 is
hermitian and it is then impossible to define the norm of
the RPA excited state.

In the next section we will therefore elaborate on the
evaluation of 〈J0〉 via the single particle GF the way we
have outlined it in the general section 3.

For later use we also introduce here the matrix ele-
ments renormalized of the RPA (RRPA) [8]

ARRPA = ε,BRRPA = 2V 〈J0〉. (39)

They will be used below when we will compare the
results of the SCRPA not only to the exact solution but
also to RRPA.

4.2 SCRPA and the single particle Green’s function

As outlined above we have to construct a mass operator for
the s. p. GF such that it yields exactly the same ground-
state energy via (24) as when calculated directly from the
two body GF (25). In order to explain the principle we
first want to exemplify the procedure with standard RPA.
In this case we have to put in (37) X = 1, Y = 0 and
〈J0〉 = −Ω2 ,

〈
J2

0

〉
= Ω2

4 . Let us for example consider the
interaction energy to RPA order

Epot = −V
2
(〈
J2

+

〉
+
〈
J2
−
〉)
⇒ ERPApot = −V Ω X Y (40)

Using one of the RPA equations (dropping 1/Ω cor-
rections):

V Ω X = (E + ε) Y (41)

and multiplying this equation with X we obtain for Epot:

ERPApot = −V Ω
X2

E + ε
V Ω (42)

Expression (42) can be identified with the evaluation
of the Feynman graph shown in Fig. 3 where the wig-
gly line represents the RPA phonon with energy E. The
particle-hole bubble has energy εph = ε and together with
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Fig. 3. Feynman graph representing ERPApot

Fig. 4. Groundstate graph for the mass operator Gω1m

the phonon the vertical cut has energy E + ε what corre-
sponds to the energy denominator in (42). The amplitude
of the phonon is X2 and the two dots of the graph rep-
resents the interaction squared. As usual we can obtain
the mass operator from the groundstate graph in cutting
open the hole line. Therefore we obtain e. g. for the GF
of the upper level (Gt−t

′

1m = −i
〈
T
(
a1m (t) a†1m (t′)

)〉
) in

the approximation of (26)

Gω1m =
1

ω − ε
2

+
1

ω − ε
2

V
Ω2X2

ω + E + ε
2

V
1

ω − ε
2

(43)

where the mass operator has the obvious graphical repre-
sentation of Fig. 4

Using the (exact) relation (what is just a variant of
(24)):

i

2
lim

t′−t→0+

(
i
∂

∂t
− ε

2

)
Gt−t

′

1m = −V
2
〈
J2

+

〉
(44)

and inserting into the lhs expression (43) we obtain

−i lim
t′−t→0+

(
i
∂

∂t
− ε

2

)
Gt−t

′

1m = −1
2

(V Ω)2 X2

E + ε
(45)

This is just half the potential energy (42) in the stan-
dard RPA approach. Proceeding analogously with G0m

and adding to (45) the corresponding expression yields the
missing factor 2. This demonstrates that our construction
of the mass operator in (43) is consistent with the RPA
groundstate energy.

Since we now have the s. p. GF at hand it is straight-
forward to calculate the occupation numbers via〈

a†1ma1m

〉
= −i lim

t′−t→0+
Gt−t

′

1m (46)

Inserting into (46) the rhs of (43) yields

∑
m

〈
a†1ma1m

〉
= (V Ω)2 X2

(ε+ E)2 = Y 2 (47)

where in the last equality we again made use of the RPA
equations. It is easy to restore the value for 〈J0〉 since∑
m

〈
a†0ma0m

〉
= Ω −

∑
m

〈
a†1ma1m

〉
and therefore

〈J0〉 = −Ω
2

+ Y 2 (48)

It is interesting to realize that (48) corresponds to the
Holstein Primakoff boson expansion of 〈J0〉 [15], a result
which of course is consistent with RPA theory.

Let us now repeat the same procedure but with
SCRPA. Using the SCRPA equations, in analogy to the
steps above, we can write for Epot :

ESCRPApot = −2 〈J0〉V
Ã XY +B X2

E + ε
(49)

where Ã = A− ε and A,B are determined in (37). Again
in cutting open the hole line we now find in analogy with
(43) for the mass operator according to (26)

Gω1m =
1

ω − ε
2

− 1
ω − ε

2

V
〈0|J− |1〉
ω + E + ε

2

×
[
〈0|J− |1〉 Ã+ 〈1|J+ |0〉B

] 1
ω − ε

2

(50)

where |1〉 again is the excited state Q† |0〉. In the RPA
limit we obtain (43). We immediately check that indeed
we get back from G1m (and G0m) the correct expression
(49) for ESCRPApot inserting (50) into the lhs of (44) (and
similar for G0m).

Since we now have a consistent SCRPA expression for
the single particle GF at hand we proceed, as this was our
goal, to the calculation of 〈J0〉. Inserting (50) into the rhs
of (46) one directly obtains

〈J0〉 = −
Ω
2

1−2[Ã XY+B X2] V
(ε+E)2

(51)

= −
Ω
2

1+2XY V
(ε+E)

This is still an implicit equation for 〈J0〉, since the
SCRPA eigenvalue E depends on it. Before proceeding it
is interesting to study several limits of (51). As expected
for the interaction going to zero we recover the free gas
limit 〈J0〉 = −Ω2 . We already checked that (50) goes over
into the RPA limit (43) when Ã, B and the transition am-
plitudes are replaced by their RPA expressions. Therefore
we also recover the boson expansion result.

One should note that in order to obtain the correct
RPA, i.e. boson result one must not make the mistake
to go over to the RPA limit, i. e. X = 1, Y = 0,

〈
J2

0

〉
= 〈J0〉2 = Ω2

4 only in (51) because to get (51) already
the assumption has been used that 〈J0〉 6= −Ω2 on the
rhs of (50) what would not be consistent with the RPA
groundstate energy then. Now if we nevertheless take the
RPA limit, using directly (51), one obtains

〈J0〉 = −
Ω
2

1 + 2
ΩY

2
. (52)
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Fig. 5. The ratio r = −
√
〈J2

0 〉/ 〈J0〉 for the fixed interaction
strength χ = V (Ω − 1) /ε = 1 as a function of Ω. The exact
results are represented by full squares, those obtained using
the RPA vacuum (38) by a full line (SCRPA) and a dotted
line (RRPA)

This result is interesting because it is precisely the low-
est order result which one obtains with the number opera-
tor method [16,21]. In the light of our theory this formula
(52) seems to be inconsistent because if on the rhs of (50)
one keeps 〈J0〉 6= −Ω2 , there is no reason to drop all the
other terms going beyond standard RPA. So in this light
the pure lowest order boson result (48) seems to be more
consistent than the partially resummed series (52). We
will see later that this is indeed confirmed by numerical
results.

4.3 Determination of
〈
J2

0

〉
In principle we are still short of the expectation value of
the square of the occupation number. Eventually we could
try to establish an analogous expression to what has been
found for 〈J0〉 (51). However, at least in the present model
the factorization relation〈

J2
0

〉 ∼= 〈J0〉2 (53)

seems to be extremely well fulfilled for the whole range
of the interaction strength considered (see next section).
Of course this may be a particularity of the model but we
suppose that, as long as the operator J0 or analogous oper-
ators in other problems are sufficiently collective, equation
(53) should work quite reasonably. In order to check this
we present the ratio r = −

√
〈J2

0 〉/ 〈J0〉 for the fixed inter-
action strength χ = V (Ω − 1) /ε = 1. (i. e. at the mean-
field transition point where fluctuations are expected to be
maximal) as a function of Ω in Fig. 5. The exact results
are represented by full squares, those obtained using the
RPA vacuum (38) by a full line (SCRPA) and a dotted
line (RRPA).

Only for Ω values lower than 4 one can see a signifi-
cant deviation from unity. So definitely s-wave shells are
difficult candidates. On the other hand should there be no
degeneracy at all like in a rotating nucleus or in an elec-
tron system in a magnetic field there is no need to know

the occupation number square since we have anyway〈
a†kaka

†
kak

〉
=
〈
a†kak

〉
(54)

So unless there is appearance of two fold degenerate
levels in a problem one is probably well off with the fac-
torization (53). In the former case a perturbative expan-
sion of square operators in terms of linear operators as
proposed in [3] using RPA excited states as intermediate
states should adequately improve on (53) which represents
the zero order approximation. This approximation is based
on expanding the expectation value of any two body oper-
ator by inserting a complete set of RPA states. Specifically
for the Lipkin model we have [3]

〈
J2

0

〉
=
∑
l

∣∣〈J0Q
†2l〉∣∣

〈Q2lQ†2l〉 (55)

Truncating to first order and evaluating the expecta-
tion values using the vacuum condition we finally arrive
to 〈

J2
0

〉
= 〈J0〉2 +

4XY 〈J0〉2
2 〈J2

0 〉+ (X2 + Y 2) 〈J0〉
(56)

a relation which expresses
〈
J2

0

〉
in terms of 〈J0〉 .

Let us next study the numerical results as they follow
from our SCRPA theory described above.

5 Numerical results

In this section we mostly will present results for Ω = 14.
We will begin in first place to investigate the quality of the
results for the correlation part of the groundstate energy,
i. e. the correlation energy

Ecorr = 〈H〉 − εN
2

(57)

with
〈H〉 = 〈J0〉 [ε− V X Y ] (58)

We show Ecorr as a function of χ = V (Ω − 1) /ε in
Fig. 6 for the RPA (dashed line), RRPA (small dots),
SCRPA (full line) and the exact solution (full squares). In
the first three cases the RPA vacuum (38) was used. For
this reason this results represent the best possible correla-
tion energies which can be obtained using each RPA for-
malism. It must be noticed that in the standard RPA cal-
culations the RPA vacuum is replaced by the HF ground
state [15]. Under this approximation one obtains Ecorr = 0
for any value of the residual interaction. What we call the
RPA and RRPA correlation energies in Fig. 6 are cal-
culated introducing in (58) the X,Y amplitudes obtained
using (39), both explicitly and in the evaluation of 〈J0〉 us-
ing the RPA vacuum. As it was mentioned many times, in
most cases only approximate expressions for 〈J0〉, as those
presented in (51) and (52), are available. Correlation ener-
gies calculated in this way are compared with the others in
Table 1. It is a very well known fact that RPA due to the
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Table 1. Correlation energy Ecorr, (57), as a function of the interaction strength χ, listed in the first column. The energies
listed in the second, third and fourth columns were evaluated using (38) for the RPA vacuum, and the X,Y obtained solving
the RPA, RRPA and SCRPA equations, respectively. In the fifth and sixth columns the correlation energies were calculated
using the approximations (51) and (52) for 〈J0〉 respectively. Exact results are shown in the last column

RPA vacuum
χ RPA RRPA SCRPA GF (52) exact

0.00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.05 -0.00072 -0.00067 -0.00067 -0.00067 -0.00072 -0.00067
0.10 -0.00289 -0.00270 -0.00270 -0.00270 -0.00289 -0.00270
0.15 -0.00653 -0.00608 -0.00608 -0.00607 -0.00652 -0.00608
0.20 -0.01167 -0.01083 -0.01083 -0.01082 -0.01165 -0.01084
0.25 -0.01836 -0.01698 -0.01698 -0.01694 -0.01829 -0.01700
0.30 -0.02666 -0.02455 -0.02456 -0.02446 -0.02651 -0.02458
0.35 -0.03665 -0.03358 -0.03359 -0.03338 -0.03637 -0.03364
0.40 -0.04846 -0.04409 -0.04411 -0.04375 -0.04793 -0.04420
0.45 -0.06221 -0.05612 -0.05618 -0.05555 -0.06131 -0.05634
0.50 -0.07809 -0.06972 -0.06985 -0.06882 -0.07659 -0.07011
0.55 -0.09635 -0.08490 -0.08517 -0.08356 -0.09392 -0.08560
0.60 -0.11731 -0.10166 -0.10220 -0.09977 -0.11345 -0.10288
0.65 -0.14142 -0.11996 -0.12100 -0.11741 -0.13534 -0.12206
0.70 -0.16932 -0.13963 -0.14164 -0.13645 -0.15980 -0.14325
0.75 -0.20199 -0.16029 -0.16417 -0.15682 -0.18702 -0.16660
0.80 -0.24103 -0.18117 -0.18862 -0.17840 -0.21722 -0.19224
0.85 -0.28936 -0.20064 -0.21502 -0.20107 -0.25060 -0.22035
0.90 -0.35353 -0.21552 -0.24337 -0.22464 -0.28732 -0.25111
0.95 -0.45504 -0.21994 -0.27365 -0.24892 -0.32753 -0.28474
1.00 -0.20449 -0.30582 -0.27372 -0.37127 -0.32145
1.05 -0.15752 -0.33981 -0.29884 -0.41853 -0.36151
1.10 -0.07081 -0.37559 -0.32413 -0.46924 -0.40517
1.15 0.05370 -0.41308 -0.34944 -0.52326 -0.45271
1.20 0.20349 -0.45226 -0.37468 -0.58039 -0.50440
1.25 0.36207 -0.49306 -0.39978 -0.64044 -0.56051
1.30 0.51542 -0.53546 -0.42471 -0.70318 -0.62129

Fig. 6. Correlation energy Ecorr vs. the interaction strength
χ, using the exact solutions (full squares), the RPA (dashed
line), the RRPA (small dots) and the SCRPA (full line). The
last three were obtained using (38) for the RPA vacuum

quasiboson approximation, i. e. the violation of the Pauli
principle, overestimates in general quite strongly the cor-
relations and in fact overbinds in the groundstate energy.

This the more, the closer one comes to the phase transi-
tion point where RPA collapses. This strong overbinding
of the RPA was for example also found in a recent calcu-
lation [22] of the electronic binding energy of a metallic
cluster. When compared with the exact results SCRPA
performs extremely well for Ecorr up to and even be-
yond the mean field phase transition point χ = 1 whereas
RRPA starts to deviate strongly from the exact result at
χ ∼= 1.

Since it is not possible to distinguish in Fig. 6 that the
SCRPA values of Ecorr stays consistently above the exact
ones, we also present the results in Table 1. In this Table
we also include the results of the SCRPA but with 〈J0〉 cal-
culated using the Green’s function formalism, (51), labeled
‘GF’, and the number operator method, labeled ‘(52)’. As
mentioned above, the SCRPA performs very well, better
than the RRPA, when the RPA vacuum (38) is used. More
important is the fact that correlation energies calculated
through the Green’s function formalism, (51), remain close
to the exact energy, although not as close as the SCRPA,
and are always larger than the exact energy, as expected
from a variational result. At variance, correlation energies
evaluted using (52) overbind the system far before the
phase transition.
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Fig. 7. Excitation energy E vs. the interaction strength χ,
with the same convention of Fig. 6

Another interesting quantity is the excitation energy.
We show E as a function of χ in Fig. 7. A similar scenario
as in the previous figure prevails: SCRPA yields by far the
best agreement with the exact results though the differ-
ences for χ & 1 are now more pronounced. It is also true
here that the SCRPA excitation energy stays consistently
above the exact results as can be seen from Table 2.

One could conclude from that that the SCRPA also
leads to an upper bound for the excitation energy. This
conjecture may be backed from the fact that we actually
derived in Sect. 2 the SCRPA equations from a minimiza-
tion within respect an average excitation energy. However,
before drawing any definite conclusion in this respect, a
more general model with more levels must be studied.

Let us now come to the investigation of the quality
of the different expressions for 〈J0〉. There are essentially
three: the one which we prefer on theoretical grounds is
the one from the Green’s function approach (51), since
it is the only one which fulfills a strong consistency re-
lation with SCRPA equations (i. e. the Hugenhotlz-van
Hove theorem). The second is the quasiboson approxima-
tion (48) which represents the lowest order correction in
1/Ω to the free gas results. The third comes from the so-
called number operator expression (52) which has recently
become very popular in the nuclear physics literature [16,
21,23]. We have shown that it is as well obtainable from
the GF approach in operating additional approximations
to (51), and that those approximations are not consistent
among them.

In Fig. 8 we show the quantity Ω/2 + 〈J0〉 as a func-
tion of χ for the three approximations to 〈J0〉 when used in
the SCRPA equations (of course only the one correspond-
ing to GF method corresponds to our definition proper
of SCRPA). In addition we show in Fig. 8 also the exact
result (full squares). The solution of the GF method (and
therefore the SCRPA proper) is shown by the full line.
The quasiboson approximation is shown by the broken
line and the number operator method by the dotted line.
Not unexpectedly the GF results are closest to the exact
ones. Somewhat a surprise is that the number operator

Table 2. Excitation energy E as a function of the interaction
strength χ. The energies listed in the second, third and fourth
columns were obtained solving the RPA, RRPA and SCRPA
equations, respectively. Exact results are shown in the last col-
umn

χ RPA RRPA SCRPA exact

0.00 1.00000 1.00000 1.00000 1.00000
0.05 0.99875 0.99875 0.99894 0.99894
0.10 0.99499 0.99499 0.99577 0.99577
0.15 0.98869 0.98870 0.99048 0.99048
0.20 0.97980 0.97986 0.98308 0.98308
0.25 0.96825 0.96840 0.97359 0.97356
0.30 0.95394 0.95426 0.96202 0.96194
0.35 0.93675 0.93737 0.94840 0.94821
0.40 0.91652 0.91762 0.93290 0.93240
0.45 0.89303 0.89491 0.91539 0.91450
0.50 0.86603 0.86908 0.89605 0.89455
0.55 0.83516 0.83998 0.87500 0.87258
0.60 0.80000 0.80744 0.85242 0.84862
0.65 0.75993 0.77126 0.82852 0.82275
0.70 0.71414 0.73126 0.80358 0.79503
0.75 0.66144 0.68728 0.77795 0.76555
0.80 0.60000 0.63925 0.75200 0.73444
0.85 0.52678 0.58729 0.72616 0.70184
0.90 0.43589 0.53194 0.70088 0.66793
0.95 0.31225 0.47437 0.67658 0.63290
1.00 0.41663 0.65362 0.59701
1.05 0.36150 0.63226 0.56050
1.10 0.31175 0.61269 0.52369
1.15 0.26907 0.59499 0.48690
1.20 0.23372 0.57914 0.45046
1.25 0.20494 0.56507 0.41472
1.30 0.18157 0.55267 0.38001

Fig. 8. Occupation numbers Ω/2 + 〈J0〉 as a function of χ.
The exact results are shown by full squares, the solution of the
GF method by the full line, the quasiboson approximation by
the broken line and the number operator method by the dotted
line

method works no better than the quasiboson approxima-
tion. However in the light of our discussion in Sect. 4 where
we argue that one passes from the GF expression (51) in
an essentially uncontrolled way to the number operator
expression (52) this outcome may seem less astonishing.
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Fig. 9. Occupation numbers Ω/2 + 〈J0〉 as a function of Ω for
fixed χ = 1, with the same convention of Fig. 8

Fig. 10. RPA components of the wave function Y/X as func-
tion of the interaction strength. The lines follow the same con-
vention as in Fig. 6

We should also say that the injection of 〈J0〉 and
〈
J2

0

〉
as expressed with the RPA groundstate wavefunction (38)
into the SCRPA equation still improves the results in
Fig. 8 with respect to GF. However, we do not show this
result in order not to overload the figure and because it
corresponds to a situation which in general is not realiz-
able.

In Fig. 9 Ω/2 + 〈J0〉 is shown not as a function of χ
for fixed Ω but for fixed χ = 1. as a function of Ω.

Again we see that Ω = 2 appears as the worst case. It
is, however, interesting to see that for this case the differ-
ences between the various approximations are also largely
enhanced without, however, inverting their respective or-
der.

One last interesting quantity is the ratio Y/X as a
function of χ, shown in Fig. 10. It is well known that
this ratio goes to 1 when approaching the phase transition
point in RPA (as seen in th broken line) while the value
of X and Y tend to ∞ individually. This then makes any
RPA result close to a phase transition meaningless. On
the other hand in SCRPA this ratio still stays of the order
1/2 around the transition point and also X and Y remain

within very reasonable limits (X = 1.156, Y = 0.580 at
χ = 1.)

A word of caution is worth here. While the energetics
and the occupation numbers obtained with the SCRPA
are very close to the exact ones, the wave functions around
and beyond χ = 1 (the value at which standard RPA col-
lapses), being far better than those obtained with RPA
or RRPA, can nontheless have an overlap with the ex-
act wave function of less than 50% [24]. In this case the
SCRPA must be extended to the deformed basis [3].

6 Conclusions

In this work we addressed the question of how to close the
SCRPA equations in a consistent way and, in particular,
of how to calculate single particle quantities such as oc-
cupation numbers in this formalism. We showed in detail
how to couple back SCRPA into the single particle propa-
gator consistently. The consistency criterion was based on
the fulfillment of the Hugenholtz-van Hove theorem which
states that the chemical potential obtained from the single
particle propagator must be equal (at equilibrium) to the
energy per particle when directly calculated via the cor-
relation function. For some problems (for instance in such
schematic models as considered here) there may also be
correlation functions which involve the expectation value
of the square of the occupation number operator, which
fall out of the SCRPA space. We, however, showed that
in general it seems to be an excellent approximation to
replace the expectation values of these operators squared
by the product of expectation values of the individual op-
erators. Only for the very special case of Ω = 2 we found
that some caution has to prevail, though a perturbative
expansion has been already proposed (55) to improve this
approximation when needed.

Concerning the numerical results we found that
SCRPA yields for this model case excellent results (besides
Ω = 2, see above). For instance we found that ground-
state as well as excited energies are always close but con-
sistently above the exact values. We also calculated the
occupation numbers from the proposed form of the single
particle propagator and found that they are closest to the
exact values in comparison with other proposed approxi-
mate forms for the occupation numbers. Somewhat as a
surprise comes the fact that the so called number oper-
ator method yields results not better than the quasibo-
son approximation. We give reasons which may back that
this is in fact a generic feature. One should say, however,
that the numerical differences for the occupation numbers
using the different methods are, at least for the model
considered, not very pronounced.

We also should mention that it is not very difficult to
obtain good results for the Lipkin model in incorporating
groundstate correlations in one way or the other. However,
at comparable numerical complexity, the SCRPA equa-
tions do at least equally well, if not better, than any other
theory on the market. In this respect we refer the reader
to our earlier study of ref. [3]. A more severe test would be
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to apply the present SCRPA scheme to other more real-
istic models like for example the multilevel pairing model
for which, in the superfluid phase, the number operator
approximation is not anymore valid. Such studies shall be
presented in future work.
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